

RBE 3002 Final Project

Team 24

Jakub Jandus, Samuel Markwick, and Kevin Siegall

Introduction

Mapping and localization are two very important (and difficult) problems in robotics. We made it look

easy because we’re just that good, but in general it’s a very common problem that any autonomous robot

needs to handle, especially if it will be operating in unknown spaces. It’s essential that any robot aiming

to effectively perform in a new environment be capable of mapping and localizing in real time as it drives.

Methodology

Our approach to the mapping problem was to use the gmapping node built into the turtlebot_slam ros

project. Gmapping will automatically process our LIDAR data and give us an occupancy grid which we can

use to figure out where to go next. Frontier detection is done through a single scan through our map data.

We use OpenCV for padding the walls to mark out a cspace, and also to create a gradient distance from

the walls, which we use the square of a difference for the cost function for both Dijkstra and A*. This

encourages any generated paths to hug the center of the available space, which aggresively helps our

robot avoid collisions with the wall and allows us to safely drive without cspace if our robot starts in the

cspace. We also restricted the max map dimensions to [-3.5 m, 3.5 m] in both dimensions, and increased

the resolution of the measured map to 0.015 m. This editing of the configuration .yaml files was very

important and to our surprise not mentioned anywhere in the lab documentation.

For all walkable nodes in our map (defined as nodes where the value is <50 and != -1), we check if it has

an unknown (-1) neighbor, and if it does, we flag it as a frontier. We then turn that frontier list into a bit

array, which gets passed to OpenCV for segmentation and centroid location finding. We then run Dijkstra’s

algorithm to all frontiers to approximate what the shortest path to that node from the robot would be

and sort all frontiers using a heuristic that balances the distance from the robot to the frontier and the

size of the frontier (which is obtained by OpenCV as well). The robot then grabs the first node in the sorted

list of frontiers, calculates A* to get the shortest path there, and then executes the path using Pure Pursuit.

Once Pure Pursuit finishes or otherwise exits (during mapping this happens if the robot travels 120 nodes

without finishing, or if the robot ever strays too far from the intended path), the robot will stop and

recalculate everything given the newly obtained map data, choose a new frontier/goal, and repeat.

To check when the robot is out of explorable frontiers, the robot runs through the regular procedure for

locating frontiers. If the number of detected nodes either in the OpenCV step or after running Dijkstra is

zero, the robot begins Phase 2 and attempts to return home. When the robot starts, it saves its initial

position. Once mapping is complete, it just runs A* to path find back to its initial position and then path

follows once again using Pure Pursuit. Upon returning to the home position, the robot saves the newfound

map to a file.

To solve the ‘kidnapping problem’, we utilize ROS’s AMCL (Augmented Monte Carlo Localization) node.

AMCL gives us a PoseStampedWithCovariance on the /amcl_pose topic, which we listen to instead of the

/odom topic as long as a flag is set in the launch file (more on that later).

We start localization by calling the global_localization service call, which spreads particles randomly

across the entire map. We noticed that the timing for Phase 3 doesn’t start until the robot starts moving.

As such, instead of spending a lot of time turning to localize, we can call the request_nomotion_update

service call to AMCL to localize in place. Calling that continuously for 10 seconds localizes the robot

decently well, and then we perform one or two last turns to make sure that our covariance is low enough

to be confident in our position.

Pure Pursuit is a path following algorithm based on the idea of using a lookahead distance, and preempting

changes in the path’s trajectory as a result. We had initially started with a distance-based lookahead, but

eventually swapped to an index-based lookahead to reduce the amount the robot would cut turns. As

such, our methodology is just to find the closest node on the path to the robot’s position, grab its index,

and then add a static amount to it, in our case 12 cells (0.18 m). If the robot ever deviated from the closest

node farther than 0.18 m, pure pursuit would emergency exit and ask the path to recalculate its trajectory

given the new current position.

We used a modular launch file for this project. When we were continuously testing and iterating on

a single file, we could disable the running of our scripts so that we could run them individually in their

own windows. This allows us to see the console output easier, as well as close and restart just those nodes

without needing to kill and restart rviz and gazebo. We also had a configurable variable for swapping

between phase 1/2 (gmapping) and phase 3 (amcl). Within the gmapping option, we copied and edited

the turtlebot3_slam launch file in order to launch rviz with our own config file instead of with theirs, which

didn’t have any of our visualization listeners.

In Rviz, we had many listeners set up to visually display information that was helpful for debugging, such

as A*/Dijkstra wavefronts, the cells and centroids of our frontiers, our cspace with padding, and our path,

all in addition to the information already displayed by gmapping/amcl, which is just the robot’s position,

the laserscan data, and the map. Using this allows us to quickly iterate and run our code without needing

to type a ton extra.

Results

OpenCV works amazingly for dilation and our gradient-space. Our A* path planner went through many

iterations, as both the heuristic and node weights were extended by penalty for turning and gradually

being farther from a wall. This made the calculations heavier, but after tuning generated nice paths in the

middle between two walls, which helped avoid accidental scratches by a large margin.

As of the writing of this paper, we are the fastest team this term, by about 10 seconds. We spent 75.74

seconds on phases 1 and 2, and 36.89 seconds on phase 3, totaling 112.64 seconds.

For frontier detection, strictly asking OpenCV for the centroid of the frontier is a little problematic, at least

when we have irregularly shaped frontiers (V-shaped frontiers tend to be common when seeing past an

obstacle from two different sides). In those cases, the centroid appears in the middle of the unknown

region, and we need to run an extra adjustment loop to get it back into walkable territory. We’ve

additionally reduced the necessity for this by increasing the tolerance for our path following, thus that if

a frontier we were driving to turned out to be a wall, we would not wind up stuck in cspace.

While coding, we entered a point where recalculating A* took about 5 seconds per iteration, which was

slowing us down significantly. Sitting in rviz, watching the searched-through space grow in pretty blue

color looked oddly satisfying, before we realized that we are publishing every iteration’s occupancy grid

message of the A* algorithm to rviz. This produced a ton of data traffic and hogged CPU power. After

commenting out the message constructing lines, the runtime increased by 2000% to about 0.25s, which

was much more acceptable.

When we started working with Pure Pursuit, we were concerned that it would not follow the path tightly

enough. This had prompted us to begin working on a Stanley Controller, which has an extra term for

reducing the perpendicular distance to the path. This didn’t wind up being necessary, as pp was working

well enough once we moved to the index-based lookahead.

Discussion

If the goal of this lab was speed, we definitely achieved that. Under 2 minutes for all three phases! Still,

we were not out of space to optimize. Our A* implementation still uses a dictionary to associate nodes

with their parents and their costs. It’s also poorly tuned and performed similarly to Dijkstra for certain

cases, especially when goals are close to walls.

We also still wait a full two seconds to ensure the newest map update before we calculate anything, every

time we ask it to calculate the path. If there was a need for us to speed our robot up more, we could have

it fairly easily. We approximate that we could have cut almost 20 seconds off our time with relative ease.

In the end, we were effectively able to perform mapping and localization. To accomplish all this, we

learned how to operate in the ROS environment, write ROS nodes, and compile custom launch files.

Conclusion

In this lab we learned how to implement SLAM and localization on a ROS based robot. For SLAM we

implemented the gmapping package to perform LiDAR SLAM mapping, to map out the field using openCV

to find frontiers and calculate drivable space and A* and pure pursuit to navigate around it. For

Localization we implemented and tuned the amcl package to be able to allow our robot to navigate around

the maze after being “kidnapped”.

In the realm of RBE, some say it's tough,

But we take those dubs, call their bluff.

Challenges come, we face the grind,

RBE's not hard; it's a path we find.

In lectures and labs, our team is supreme,

We master the puzzles, living the dream.

They call it a myth, but we're here to say,

On the demo field, we'll pave our own way.

References

ROS gmapping package: http://wiki.ros.org/gmapping

ROS AMCL package: http://wiki.ros.org/amcl

Code final release: https://github.com/RBE300X-Lab/RBE3002_B24_Team24/releases/tag/final

Contributions
Realistically, we all touched and tuned around the code so much that it is hard to point out contributions

of who did this specific part. On top of that git blame is hard to use since we often would make changes

on each other’s (specifically Sam’s) laptops while working on the robot.

http://wiki.ros.org/gmapping
http://wiki.ros.org/amcl
https://github.com/RBE300X-Lab/RBE3002_B24_Team24/releases/tag/final

	RBE 3002 Final Project
	Team 24
	Jakub Jandus, Samuel Markwick, and Kevin Siegall

	Introduction
	Methodology
	Results
	Discussion
	Conclusion
	References
	Contributions

